New Memory Technology Migration from Lab to Fab

Narbeh Derhacobian
Adesto Technologies Corp

Presented at Arizona Nanotechnology Cluster Symposium
April 2008
Memory Technology Migration From Lab to Fab

- For a successful migration, where is the beginning and where is the end?
Underpinning of Migration from Lab to Fab

• The base technology has to solve a problem in order to start the migration

• 3 Key Questions:
 – What is the size of the problem? How bad is the pain?
 – How well does the base technology address the problems?
 – How much does it cost to take the base technology from the Lab to the Fab?
 • Does the ROI make sense?

• Constraints
 – Existing market expectations have to be respected
 • Fundamentals
 • Power / Performance / Cost
 • Reliability
 • End Use Models
Where is the Market Pull?

• **Market / End Applications for semiconductor memory:**
 – Consumer, Communication, Computing, Automotive Electronics Industry

• **3 Key Problems:**
 – Cost / Scaling
 – Performance / Power
 – Functional Integration

• **Economic Size of The Problem (just for NVM):**
 – Embedded NVM Market (2011): ~$7B

• **Base Technologies Coming to Rescue:**
 – Evolution of Existing Technologies
 • nanoFG, U-FG, etc.
 – Emerging Memory Technologies
 • RRAM (PCM, PMC, CMO, etc)
 • MRAM, FRAM
 • NEMS, MEMS, etc
Who Will Win?

- OK, now we have a significant end market facing serious problems and involving billions of dollars of economic value.

- Looking at the base technologies in the Lab, can you tell who has the best chance of addressing the problems and winning?

- It’s all about MARGINS and CONSTRAINTS.
 - How well does the base technology solve the different problems?
 - How does this technology impact all the CONSTRAINTS?
 - Example:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Existing Technology</th>
<th>Technology X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Production</td>
<td>Lab</td>
</tr>
<tr>
<td>Fundamentals</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Performance</td>
<td>1 X</td>
<td>100 X</td>
</tr>
<tr>
<td>Power</td>
<td>1 X</td>
<td>1 X</td>
</tr>
<tr>
<td>Cost</td>
<td>1 X</td>
<td>1 X</td>
</tr>
<tr>
<td>Reliability</td>
<td>1 X</td>
<td>1 X</td>
</tr>
<tr>
<td>End Use Model</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

DEAD on ARRI
Candidate Technologies

Emerging Technology Options for Non-Volatile Memory

<table>
<thead>
<tr>
<th></th>
<th>Existing Non Volatile Memory Solutions</th>
<th>Phase Change Ovonics</th>
<th>MRAM</th>
<th>PMC Technology (Arizona State Univ.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals</td>
<td>OK</td>
<td>OK</td>
<td>OK (?)</td>
<td>OK</td>
</tr>
<tr>
<td>WRITE Performance</td>
<td>1</td>
<td>100 X</td>
<td>1000 X</td>
<td>500 X</td>
</tr>
<tr>
<td>READ Performance</td>
<td>1</td>
<td>10 X</td>
<td>10 X</td>
<td>50 X</td>
</tr>
<tr>
<td>WRITE Power</td>
<td>1</td>
<td>1 X</td>
<td>1 X</td>
<td>0.001 X</td>
</tr>
<tr>
<td>READ Power</td>
<td>1</td>
<td>0.1 X</td>
<td>0.1 X</td>
<td>0.01 X</td>
</tr>
<tr>
<td>Cost</td>
<td>1</td>
<td>0.5 X</td>
<td>2 X</td>
<td>0.1 X</td>
</tr>
<tr>
<td>Reliability</td>
<td>1</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>End Use Model</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

Higher is Better → Lower is Better → Higher is Better → Lower is Better → Higher is Better

Always Bet on the Technology with the Largest MARGINS
Requirement to Win: Withstand Trauma of Migration

- Base technology must exhibit orders of magnitude improvements and margins in key CONSTRAINTS to withstand the qualification and commercialization process

- Lab to Fab is 12 rounds of vicious punishment